
4 Potentiels en thermodynamique

4.1 Relations fondamentales

Dans ce chapitre, nous commencerons tout d’abord par vous donner quelques
relations fondamentales pour l’étude de la thermodynamique en prenant comme
point de départ l’équation 14.

On relève alors la relation de Gibbs:

dU = TdS − pdV +

r∑
A=1

µAdNA (37)

On rappelle qu’on peut exprimer la température, la pression et le potentiel
chimique comme:

T =
∂U

∂S
p = −∂U

∂V
µA ==

∂U

∂NA
(38)

Ensuite en intégrant la relation 14 et après quelques simples modifications,
nous obtenons la relation d’euler:

U = TS − pV +

r∑
A=1

µANA (39)

Enfin, en dérivant cette équation et en la comparant à l’équation 14, il est
alors possible de trouver la relation de Gibbs-Duhem:

SdT − V dp +

r∑
A=1

NAdµA = 0 (40)

4.2 Transformations de Legendre

La transformation de Legendre permet de passer d’un potentiel thermody-
namique à un autre en utilisant la transformation de Legendre. En notant
Fonction d’état d’une variable extensive F (X) qui est strictement monotone
et dérivable (bijective et inversible). On note alors la grandeur intensive
conjuguée comme :

Y (X) =
dF (X)

dX
→ Y =

F −G

X
(41)

Où Y (X) est la pente de la tangente de la fonction F (X) au point X. La tan-
gente l’axe des ordonnées à l’origine au point G. La transformée de Legendre
s’écrit alors:

G(Y ) = F (X(Y )) − Y X(Y ) (42)

Pour la suite, on notera Yi(X1 . . . ) = ∂F (X1... )
∂Xi

ce qui simplifiera la notation.
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On défini ensuite la courbure:

∂2G

∂Y 2
i

= −
( ∂2F

∂X2
i

)−1

(43)

4.3 Les potentiels thermodynamiques

En se rappelant des équations 37 et 38, il est possible de calculer ce que nous
allons appeler l’énergie libre F (T ,V , {NA}) qui est la transformée de l’énergie
interne U(S,V , {NA}) par rapport à l’entropie S. On à alors:

F = U − ∂U

∂S
S = U − TS (44)

dF = −SdT − pdV +

r∑
A=1

µAdNA (45)

et on peut alors calculer les variables d’état comme:

S = −∂F

∂T
p = −∂F

∂V
µA ==

∂F

∂NA
(46)

De la même façon, on pourra définir une variable appelée EnthalpieH(S, p, {NA})
qui est la transformée de legendre de U(S,V , {NA}) par rapport au volume V .
On obtient alors:

H = U − ∂U

∂V
V = U + pV (47)

dH = TdS + V dp +

r∑
A=1

µAdNA (48)

et on peut donc calculer les variables d’état comme:

T =
∂H

∂S
V =

∂H

∂p
µA ==

∂H

∂NA
(49)

Enfin, on définira une variable appelée l’énergie libre de GibbsG(T , p, {NA})
qui est la transformée de legendre de U(S,V , {NA}) par rapport au volume V
et à l’entropie S. On obtient alors:

G = U − ∂U

∂S
S − ∂U

∂V
V = U + pV − TS (50)

dG = −SdT + V dp +

r∑
A=1

µAdNA (51)

et on peut donc calculer les variables d’état ainsi:

S = −∂G

∂T
V =

∂G

∂p
µA ==

∂G

∂NA
(52)
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4.4 Équilibre de sous-systèmes couplés à un réservoir

un réservoir (ou bain) peut être compris comme un grand système dont
les variables d’état qui les caractérisent restent fixes lorsqu’ils sont couplés à
un autre système. Par exemple, un réservoir de chaleur aura toujours une
température constante. Un système couplé à un réservoir de chaleur aura alors
une température d’équilibre égale à la température du réservoir. On peut con-
sidérer l’extérieur d’un système comme un réservoir.

En regardant quelques systèmes spécifiques, nous donnerons ici les conclu-
sions auxquelles nous avons pu aboutir. En gros c’est un peu de l’étude de
cas du coup je vous conseillerai d’aller directement voir dans les slides si vous
voulez.

• Si un système rigide et diatherme est maintenu à température constante
à l’aide d’un réservoir de chaleur, l’état d’équilibre mécanique entre ses
sous-systèmes est celui qui minimise l’énergie libre du système.

• Si un système déformable et diatherme est maintenu à pression constante
à l’aide d’un réservoir de travail, et que les transferts de chaleur entre les
sous-systèmes et avec le réservoir de travail ont lieu à entropie constante,
l’état d’équilibre thermique entre ses sous-systèmes est celui qui minimise
l’enthalpie du système.

• Si un système déformable et diatherme est maintenu à température et
pression constantes à l’aide d’un réservoir de chaleur et de travail, l’état
d’équilibre chimique entre ses sous-systèmes est celui qui minimise l’énergie
libre de Gibbs du système.

• La chaleur fournie à un système maintenu ànpression constante par un
réservoir de travail est égale à la différence d’enthalpie entre l’état initial
et l’état final

• Le travail effectué sur un système maintenu à température constante par
un réservoir de chaleur est égal à la différence d’énergie libre entre l’état
initial et l’état final.

• L’apport énergétique de matière fournie à un système maintenu à température
et pression constantes par un réservoir de chaleur et de travail est égal à
la différence d’énergie libre de Gibbs entre l’état initial et l’état final.

4.5 Théorème de Schwartz et relations de Maxwell

Premièrement, le théorème de Schwartz nous dit que pour une fonction
(d’état) continue et dérivable f(x, y) dont les dérivées partielles sont continues
et dérivables, on à alors:

∂

∂x

(∂f(x, y)

∂y

)
=

∂

∂y

(∂f(x, y)

∂x

)
(53)
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Ensuite, en appliquant ce théorème aux potentielles thermodynamiques, on ob-
tient alors les relations de maxwell correspondantes. Par exemple, pour
l’énergie interne U(S,V ) la relation de Schwartz et de maxwell correspondante
sont (respectivement):

∂

∂S

(∂U(S,V )

∂V

)
=

∂

∂V

(∂u(S,V )

∂S

)
et − ∂p(S,V )

∂S
=

∂T (S,V )

∂V
(54)

Il est aussi possible d’utiliser le même principe en utilisant les autres poten-
tielles thermodynamiques vu dans la section 4.3 pour avoir d’autres relations.

Nous noterons simplement ici qu’il existe une relation appelée relation cy-
clique qui est très utile et se déduit de la même façon:

∂x(y, z)

∂x

∂y(x, z)

∂z

∂z(x, y)

∂x
= −1 (55)

Nous vous laisserons voir par vous même les applications de cours directe-
ment dans les slides.
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